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Fair ranking – current approaches

A priori knowledge disadvantaged protected groups

Impose fairness contraints
At least X for each gender, at least Y for each ethnicity
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Impose fairness contraints
At least X for each gender, at least Y for each ethnicity

Fair ranking – current approaches

But.. which are the groups that need to be protected? 

But.. how much representation is enough? 
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Automa'c iden'fica'on of disadvantaged subgroups

• Extract subgroups over protected attributes 
via frequent pattern mining 
• Above frequency threshold to control the 

enumeration and statistical significance
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Automatic identification of disadvantaged subgroups

• Extract subgroups over protected attributes 
via frequent pattern mining 
• Above frequency threshold to control the 

enumeration and statistical significance

• Compute their degree of disadvantage (or 
advantage) in the ranking
• Notion of subgroup divergence

{gender=female} 

{gender=female , 
ethnicity=Afr-Am} 

{gender=male , 
ethnicity=Cauc} 



Subgroup divergence Δ
C: all candidates; 𝑔: a group; 
𝛾 𝑐 : utility of a candidate in the ranking, e.g., the score or ranking position

𝛾 𝑔 : average utility of the candidates in group 𝑔

Δ! 𝑔 = 𝛾 𝑔 − 𝛾(𝐶)

Disadvantaged group: Δ! 𝑔 < 0 & statistically significant

𝑔

𝛾 𝑐

𝛾 𝑔
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Desired proper;es of the mi;ga;on process

Mitigate the divergence 
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Constant average
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by

Desired properties of the mitigation process

Δ%!(𝑔) > Δ% 𝑔

Where 𝛾" are the scores for the new ranking rMi<gate the divergence 
of a subgroup 𝒈

Reduce the disadvantage



Desired properties of the mitigation process

Monotonicity
constraint

min
'∈)

Δ%!(𝑔) > min
'∈)

Δ%(𝑔)

Avoid that by mitigating the divergence of a 
subgroup, we worsen the condition of others



Desired properties of the mitigation process

Constant average
overall behavior

𝛾 𝐶 = 𝛾′(𝐶)

Overall ranking utility is maintained in 
the population 



Step of mitigation for disadvantage group 𝑔

Update the scores 𝛾′ of the candidates 𝑐 ∈ 𝐶 as follows

𝛾* 𝑐 = 0
𝛾 𝑐 + 𝜏 𝑐 ∈ 𝑔

𝛾 𝑐 −
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𝑐 ∉ 𝑔
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−
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𝑐 ∈ 𝑔
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Counterbalance the increase of the scores
Sa@sfies constant average overall behavior property



Step of mitigation for disadvantage group 𝑔

Update the scores 𝛾′ of the candidates 𝑐 ∈ 𝐶 as follows
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Implement the mi8ga8on of the divergence of a subgroup
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Step of mitigation for disadvantage group 𝑔

Update the scores 𝛾′ of the candidates 𝑐 ∈ 𝐶 as follows

𝛾* 𝑐 = 0
𝛾 𝑐 + 𝜏 𝑐 ∈ 𝑔

𝛾 𝑐 −
𝜏 ⋅ |𝑔(𝑐)|
𝐶 − |𝑔 𝐶 |

𝑐 ∉ 𝑔

with 𝜏 ∈ ℝ+,

Does it sa8sfy the monotonicity property?
… Depends on 𝝉



𝜏 = min −Δ 𝑔 , 𝜏567

Ensuring the monotonicity property

For 𝑐 ∉ 𝑔, we decrease the score à we want to avoid decreasing it such that 
𝑚𝑖𝑛
'∈)

𝛥% 𝑔 > 𝑚𝑖𝑛
'∈)

𝛥%!(𝑔)

We compute the maximum supported 𝜏567for all extracted subgroups

For a full miBgaBon



Iterative process

1. Extract subgroups, 
compute the divergence

2. Pick the most
disadvantaged one

3. MiBgate it by 
𝜏 = min −Δ 𝑔 , 𝜏!"#

We repeat the mitigation step until
- No disadvantaged group
- No 𝜏 > 0



Example for LSAT dataset

21,791 law students; we rank them by LSAT score

Gender and ethnicity as protected attributes

There are 11 disadvantage and 4 advantaged groups

Disadvantaged group Highest position 50% by position 𝚫

ethinicity=African-American, gender=female 777 20,163 -7,7

ethinicity=African-American 402 19,968 -7,35

Advantaged group Highest position 50% by position 𝚫

ethinicity=Caucasian, gender=male 1 9,690 0,96

ethinicity=Caucasian 1 10,028 0,76



Example for LSAT dataset - mitigation
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Example for LSAT dataset - mitigation

Disadvantaged group 𝚫𝜸 𝚫𝜸%
1st iteration

𝚫𝜸%
mitigation

ethinicity=African-American, gender=female -7,7 0 0,15 

ethinicity=African-American -7,35 -2,66 0,02

Advantaged group 𝚫𝜸 𝚫𝜸%
1st iteration

𝚫𝜸%
mitigation

ethinicity=Caucasian, gender=male 0,96 0,67 0,15

ethinicity=Caucasian 0,76 0,46 0,06



Example for LSAT dataset – impact of mitigation
Min disadvantage, closeness to original ranking, dis&advantage groups



Example for LSAT dataset – impact of mitigation
Contribution to the divergence via Global Shapley value



Our approach always mitigates the disadvantages, 
reducing disadvantaged subgroups to 0 with high 

closeness to the original ranking

Outline of the experimental results

5 real-world (LSAT, COMPAS, folktables, german credit, IIT-JEE) + 1 synthetic datasets
3 baseline approaches – also addressing intersectionality 
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