Intersectional fair ranking via subgroup divergence

Eliana Pastor, Francesco Bonchi

Politecnico di Torino, CENTAI - Italy ECML PKDD 2024 – Vilnius, Lithuania

Politecnico di Torino

Rankings are adopted everywhere

Rankings are adopted everywhere

Rankings are adopted everywhere

Advantaged

Disadvantaged

Even more disadvantaged

Fair ranking – current approaches

A priori knowledge disadvantaged protected groups

Impose fairness contraints

At least X for each gender, at least Y for each ethnicity

Fair ranking – current approaches

A priori knowledge disadvantaged protected groups But.. which are the groups that need to be protected?

Impose fairness contraints At least X for each gender, at least Y for each ethnicity But.. how much representation is enough?

Our approach

Automatic identification of disadvantaged subgroups

Via subgroup identification techniques

Mitigation of subgroup disadvantage Based on their degree of disadvantage

Our approach

Automatic identification of disadvantaged subgroups Via subgroup identification techniques

Automatic identification of disadvantaged subgroups

{gender=male ,
ethnicity=Cauc}

{gender=female}

{gender=female ,
ethnicity=Afr-Am}

- Extract subgroups over protected attributes via frequent pattern mining
 - Above frequency threshold to control the enumeration and statistical significance

Automatic identification of disadvantaged subgroups

{gender=male ,
ethnicity=Cauc}

(gend

{gender=female}

{gender=female ,
ethnicity=Afr-Am}

- Extract subgroups over protected attributes via frequent pattern mining
 - Above frequency threshold to control the enumeration and statistical significance

- Compute their degree of disadvantage (or advantage) in the ranking
 - Notion of subgroup divergence

Subgroup divergence Δ

C: all candidates; g: a group;

 $\gamma(c)$: **utility** of a candidate in the ranking, e.g., the score or ranking position

 $\gamma(g)$: average utility of the candidates in group g

$$\Delta_{\gamma}(g) = \gamma(g) - \gamma(C)$$

Disadvantaged group: $\Delta_{\gamma}(g) < 0$ & statistically significant

Mitigation of subgroup disadvantage Based on their degree of disadvantage

Mitigate the divergence of a subgroup *g* Monotonicity constraint **Constant average overall behavior**

Mitigate the divergence of a subgroup *g*

 $\Delta_{\gamma'}(g) > \Delta_{\gamma}(g)$

Where γ' are the scores for the new ranking r

Reduce the disadvantage

Monotonicity constraint

 $\min_{g \in G} \Delta_{\gamma'}(g) > \min_{g \in G} \Delta_{\gamma}(g)$

Avoid that by mitigating the divergence of a subgroup, we worsen the condition of others

$$\gamma(C) = \gamma'(C)$$

Overall ranking utility is maintained in the population

Update the scores γ' of the candidates $c \in C$ as follows

$$\gamma'(c) = \begin{cases} \gamma(c) + \tau & c \in g \\ \gamma(c) - \frac{\tau \cdot |g(c)|}{|C| - |g(C)|} & c \notin g \end{cases}$$

with $\tau \in \mathbb{R}_{>0}$

 $c \in g$

Update the scores γ' of the candidates $c \in C$ as follows

 $\gamma'(c) = \begin{cases} \gamma(c) + \tau & c \in g \\ \gamma(c) - \frac{\tau \cdot |g(c)|}{|C| - |g(C)|} & c \notin g \end{cases}$ with $\tau \in \mathbb{R}_{>0}$ Counterbalance the increase of the scores Satisfies **constant average overall behavior** property

Update the scores γ' of the candidates $c \in C$ as follows

$$\gamma'(c) = \begin{cases} \gamma(c) + \tau & c \in g \\ \gamma(c) - \frac{\tau \cdot |g(c)|}{|C| - |g(C)|} & c \notin g \end{cases}$$

with $\tau \in \mathbb{R}_{>0}$

For $\tau > 0$, $\gamma'(c) > \gamma(c) \to \Delta_{\gamma'}(g) > \Delta_{\gamma}(g)$

Implement the mitigation of the divergence of a subgroup

Update the scores γ' of the candidates $c \in C$ as follows

$$\gamma'(c) = \begin{cases} \gamma(c) + \tau & c \in g \\ \gamma(c) - \frac{\tau \cdot |g(c)|}{|C| - |g(C)|} & c \notin g \end{cases}$$

with $\tau \in \mathbb{R}_{>0}$

Does it satisfy the monotonicity property? ... Depends on τ

Ensuring the monotonicity property

For $c \notin g$, we decrease the score \rightarrow we want to avoid decreasing it such that $\min_{g \in G} \Delta_{\gamma}(g) > \min_{g \in G} \Delta_{\gamma'}(g)$

We compute the maximum supported τ_{cap} for all extracted subgroups

$$\tau = \min(-\Delta(g), \tau_{cap})$$
For a full mitigation

Iterative process

We repeat the mitigation step until

- No disadvantaged group
- No $\tau > 0$

Example for LSAT dataset

21,791 law students; we rank them by LSAT score

Gender and ethnicity as protected attributes

There are 11 disadvantage and 4 advantaged groups

Disadvantaged group	Highest position	50% by position	Δ
ethinicity=African-American, gender=female	777	20,163	-7,7
ethinicity=African-American	402	19,968	-7,35

Advantaged group	Highest position	50% by position	Δ
ethinicity=Caucasian, gender=male	1	9,690	0,96
ethinicity=Caucasian	1	10,028	0,76

Example for LSAT dataset - mitigation

Disadvantaged group	Δ_{γ}
ethinicity=African-American, gender=female	-7,7
ethinicity=African-American	-7,35

Advantaged group	Δ_{γ}
ethinicity=Caucasian, gender=male	0,96
ethinicity=Caucasian	0,76

Example for LSAT dataset - mitigation

Disadvantaged group	Δ_{γ}	$\Delta_{\gamma \prime}$ 1 st iteration
ethinicity=African-American, gender=female	-7,7	0
ethinicity=African-American	-7,35	-2,66

Advantaged group	Δ_{γ}	$\Delta_{\gamma \prime}$ 1 st iteration
ethinicity=Caucasian, gender=male	0,96	0,67
ethinicity=Caucasian	0,76	0,46

Example for LSAT dataset - mitigation

Disadvantaged group	Δ_{γ}	$\Delta_{\gamma \prime}$ 1 st iteration	$\Delta_{\gamma \prime}$ mitigation
ethinicity=African-American, gender=female	-7,7	0	0,15
ethinicity=African-American	-7,35	-2,66	0,02

Advantaged group	Δ_{γ}	$\Delta_{\gamma \prime}$ 1 st iteration	$\Delta_{\gamma \prime}$ mitigation
ethinicity=Caucasian, gender=male	0,96	0,67	0,15
ethinicity=Caucasian	0,76	0,46	0,06

Example for LSAT dataset – impact of mitigation

Min disadvantage, closeness to original ranking, dis&advantage groups

Example for LSAT dataset – impact of mitigation

Contribution to the divergence via Global Shapley value

Outline of the experimental results

5 real-world (LSAT, COMPAS, folktables, german credit, IIT-JEE) + 1 synthetic datasets

3 baseline approaches – also addressing intersectionality

Our approach always mitigates the disadvantages, reducing disadvantaged subgroups to 0 with high closeness to the original ranking

THANK YOU!

elianap.github.io/

eliana.pastor@polito.it

