Explaining and building trust in machine learning: the local and subgroup perspectives

Eliana Pastor

Seminar @ sqIRL/IDLab, University of Antwerp

Hello!

I'm Eliana!

I'm an assistant professor at Politecnico di Torino, Italy

I work on Trustworthy and Explainable AI

My interests.. in keywords

Trustworthy AI

Explainable AI, Fairness in AI, Robusteness, Debugging

- Analysis of disparities in data subgroups
- XAI for Speech & Sound
- Post-hoc XAI for tabular & text data
- KANs
- Concept-based XAI
- & other stuff

Our problem: open the box

From which perspective we open the black box

Subgroup perspective

- Identification of subgroups with *divergent* classification behavior
- Divergent subgroup analysis in speech data
- Subgroup-based model comparison
- Mitigate subgroup disparities
- Interpretable subgroup drift detection

Local perspective

- Explaining prediction of speech models
- Assessing explainability methods for transformers models

Subgroup perspective

- Identification of subgroups with *divergent* classification behavior
- Divergent subgroup analysis in speech data
- Subgroup-based model comparison
- Mitigate subgroup disparities
- Interpretable subgroup drift detection

HIGH ERROR RATE

AS OVERALL MODEL BEHAVIOR

Divergence of a subgroup

pattern, interpretable, e.g., {age=20-35, gender=female}

 $\Delta(S) = f(S) - f(D)$

performance measure

all dataset

Generic & model agnostic

> Automatic identification of subgroups via frequent pattern mining

Pastor, E, et al. "Looking for trouble: Analyzing classifier behavior via pattern divergence "ACM SIGMOD 2021

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica

May 23, 2016

Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk. (Josh Ritchie for ProPublica)

Divergent subgroups - Example

COMPAS dataset. Recidivism predictions based on defendant information

Divergence Statistical significance

	Itemset	Δ_{FPR}	support	t
Subgroup	age=25-45, #prior>3, race=Afr-Am, sex=Male	0.22	0.13	7.1
	age=25-45, #prior>3, race=Afr-Am	0.211	0.15	7.4
	age=25-45, charge=F, #prior>3, race=Afr-Am	0.202	0.11	6.2

Subgroup frequency

Contributions of items to divergence

Itemset	Δ_{FPR}
age=25-45, #prior>3, race=Afr-Am, sex=Male	0.22

What is the contribution of each term?

Contributions of items to divergence

Shapley value Given the score of subset of players

Contribution of item α in I:

$$\Delta(\alpha \mid I) = \sum_{J \subseteq I \setminus \{\alpha\}} \frac{|J|!(|I| - |J| - 1)!}{|I|!} [\Delta(J \cup \alpha) - \Delta(J)]$$

Contributions of items to divergence

Itemset				
age=25-45, #prior>3, race=Afr-Am, sex=Male	0.22			

Divergent subgroups - Example

Itemset	Δ_{FPR}	support	t
age=25-45, #prior>3, race=Afr-Am, sex=Male	0.22	0.13	7.1
age=25-45, #prior>3, race=Afr-Am	0.211	0.15	7.4
age=25-45, charge=F, #prior>3, race=Afr-Am	0.202	0.11	6.2

Globally?

Global divergence

Global Shapley Value

A generalization of Shapley value that accounts for:

- Incompatible items (e.g. {age<25, age>45})
- . Minimum support threshold

$$\widetilde{\Delta}^{g}(I,s) = \sum_{B \subseteq A \setminus attr(I)} \frac{|B|!(|A| - |B| - |I|)!}{|A|! \prod_{b \in B \cup attr(I)} m_{b}} \sum_{J:J \cup I \in I_{B \cup attr(I)}^{\star}} \left[\Delta(J \cup I) - \Delta(J)\right]$$
normalization factor, where m_b set of frequent itemsets with attributes BUattr(I)

Global divergence - COMPAS

Subgroup perspective

- Identification of subgroups with *divergent* classification behavior
- Divergent subgroup analysis in speech data
- Subgroup-based model comparison
- Mitigate subgroup disparities
- Interpretable subgroup drift detection

Our scenario

Turn on the kitchen lights

Action: activate Object: lights Location: kitchen

Desidered properties of a subgroup

Interpretable

- e.g., lower performance for young women

Adequately represented

- Statistically and operational significant

Highlighting peculiar behavior

How to make an interpretable data grouping?

Clustering?

But... clusters of utterances are not directly interpretable

Enhance utterance with interpretable metadata

Metadata

...

gender=female country=Italian noise-level=high speaking rate=fast

Koudounas, Alkis, et al. "Exploring subgroup performance in end-to-end speech models." IEEE ICASSP 2023

Divergent subgroup

By 31.22 less accurate!

Subgroup perspective

- Identification of subgroups with *divergent* classification behavior
- Divergent subgroup analysis in speech data
- Subgroup-based model comparison
- Mitigate subgroup disparities
- Interpretable subgroup drift detection

Which model to choose?

.. most accurate..?

But on subgroups?

Inter-model performance gap

S = **pattern**, e.g., {age=20-35, gender=female}

$$gap_{f}(S, M_{1}, M_{2}) = f(S, M_{2}) - f(S, M_{1})$$
performance on S of model M₂
performance on S of model M₁

Koudounas, Alkis, et al. "Towards comprehensive subgroup performance analysis in speech models." ACM/ IEEE Transactions on Audio, Speech and Language Processing (2024).

Distribution of gain in performance

An example

Subgroup perspective

- Identification of subgroups with *divergent* classification behavior
- Divergent subgroup analysis in speech data
- Subgroup-based model comparison
- Mitigate subgroup disparities
- Interpretable subgroup drift detection

From identification to mitigation

Once we identify **divergent patterns**.. actively operate on **mitigation**

• Subgroup-guided data acquisition

- Divergence regularization
- Subgroup-based contrastive loss
- Targeted data augmentation

Post-processing Subgroup-guided data acquisition

Speaking rate=high, gender=male

Step 1. Identify the divergent patterns

Step 2. Acquire data satisfying the patterns

Koudounas, Alkis, et al. "Prioritizing data acquisition for end-to-end speech model improvement." IEEE ICASSP 2024

In-processing Divergence regularization

Add a divergence regularization term

$$\mathcal{L}_{\Delta} = \sum_{x_i \in D} \max_{S \in \mathbb{S}(x_i)} |\Delta(S)| \mathcal{L}_{CE}(y_i, \hat{y}_i)$$

where $S(x_i)$ is the set of subgroups satisfied by an instance x_i and \mathcal{L}_{CE} is the cross-entropy loss,

Higher weight for samples with high-divergence

Koudounas, Alkis, et al. "Mitigating Subgroup Disparities in Speech Models: A Divergence-Aware Dual Strategy." IEEE Transactions on Audio, Speech and Language Processing (2025).

In-processing Targeted data augmentation

Koudounas, Alkis, et al. "Mitigating Subgroup Disparities in Speech Models: A Divergence-Aware Dual Strategy." IEEE Transactions on Audio, Speech and Language Processing (2025).

In-processing Subgroup-based contrastive training

Three separate contrastive learning levels: task, subgroup, and error. At each level, we employ a multisimilarity (MS) loss to selectively contrast sample pairs based on their affinity

Koudounas, Alkis, et al. "A Contrastive Learning Approach to Mitigate Bias in Speech Models." Interspeech 2024 – Best student paper

Subgroup perspective

- Identification of subgroups with *divergent* classification behavior
- Divergent subgroup analysis in speech data
- Subgroup-based model comparison
- Mitigate subgroup disparities
- Interpretable subgroup drift detection

Subgroup based-drift detection

Typically, we monitor drift for overall performance

Subgroup based-drift detection

We propose an efficient algorithm to **monitorate subgroups** overtime **and detect subgroup drifts**

Giobergia, Flavio, et al. "Detecting Interpretable Subgroup Drifts." ACM KDD 2025 (to appear).

Subgroup perspective

- Identification of subgroups with *divergent* classification behavior
- Divergent subgroup analysis in speech data
- Subgroup-based model comparison
- Mitigate subgroup disparities
- Interpretable subgroup drift detection

Local perspective

- Explaining prediction of speech models
- Assessing explainability methods for transformers models

Our scenario

Turn on the kitchen lights

Action: activate Object: lights

Location: kitchen

Why?

Explain the interaction between utterance components and predictions in a human-understandable manner

Pastor, Eliana, et al. "Explaining Speech Classification Models via Word-Level Audio Segments and Paralinguistic Features." EACL 2024

How do we define interpretable representations describing utterances?

How do we explain predictions at the semantic and paralinguistic levels?

Perturbation-based approach

- > Perturb the utterance based on an interpretable feature
- > Measure the impact on predictions
- > The greater the change, the more the model relies on this feature!

Mask audio segments

Aggregate feature impact

- Leave-one-out
- LIME

Paralinguistic

Speaking rate

Try it!

from speechxai import Benchmark
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor

model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic")

feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")

benchmark = Benchmark(model, feature_extractor)

explanation = benchmark.explain(audio_path=audio_path, methodology="LIME")

benchmark.show_table(explanation)

Local perspective

- Explaining prediction of speech models
- Assessing explainability methods for transformers models

Library to explain and benchmark explainers

We proposed **ferret**, Python **library for benchmarking interpretability** techniques on **Transformers** for text and speech data

What can you do with ferret?

Explaining individual prediction

Example. Sentiment classification – positive prediction

Token	_Great	_movie	for	a	_great	_nap	!
Partition SHAP	0.35	0.12	0.05	0.06	0.35	-0.00	0.05
LIME	-0.07	-0.08	0.03	-0.01	-0.24	0.17	0.06
Gradient	0.12	0.17	0.06	0.04	0.14	0.23	0.05
Gradient (x Input)	-0.11	-0.09	-0.08	0.03	0.03	0.11	-0.05
Integrated Gradient	-0.09	0.10	0.11	-0.02	0.10	0.02	-0.03
Integrated Gradient (x Input)	-0.09	-0.15	-0.17	-0.15	-0.10	-0.24	-0.10

What can you do with ferret?

Evaluate explanations

Faithfulness

How accurately the explanation reflects the inner working of the model

Plausibility

How explanations are aligned with human reasoning

Faithfulness

Token	_Great	_movie	for	a	_great	_nap	!
Partition SHAP	0.35	0.12	0.05	0.06	0.35	-0.00	0.05
LIME	-0.07	-0.08	0.03	-0.01	-0.24	0.17	0.06
Gradient	0.12	0.17	0.06	0.04	0.14	0.23	0.05
Gradient (x Input)	-0.11	-0.09	-0.08	0.03	0.03	0.11	-0.05
Integrated Gradient	-0.09	0.10	0.11	-0.02	0.10	0.02	-0.03
Integrated Gradient (x Input)	-0.09	-0.15	-0.17	-0.15	-0.10	-0.24	-0.10

aopc_compr aopc_suff taucorr_loo

Partition SHAP	-0.13	-0.05	-0.33
LIME	-0.01	-0.20	0.24
Gradient	-0.16	-0.09	0.24
Gradient (x Input)	-0.00	-0.20	0.52
Integrated Gradient	-0.02	-0.17	0.33
Integrated Gradient (x Input)	0.00	1.00	-0.62

Plausibility

Token	_Great	_movie	for	_a	great	_nap	!
Partition SHAP	0.35	0.12	0.05	0.06	0.35	-0.00	0.05
LIME	-0.07	-0.08	0.03	-0.01	-0.24	0.17	0.06
Gradient	0.12	0.17	0.06	0.04	0.14	0.23	0.05
Gradient (x Input)	-0.11	-0.09	-0.08	0.03	0.03	0.11	-0.05
Integrated Gradient	-0.09	0.10	0.11	-0.02	0.10	0.02	-0.03
Integrated Gradient (x Input)	-0.09	-0.15	-0.17	-0.15	-0.10	-0.24	-0.10

Human explanation

auprc_plau token_f1_plau token_iou_plau

Partition SHAP	1.00	0.50	0.33
LIME	0.14	0.00	0.00
Gradient	0.29	0.44	0.29
Gradient (x Input)	0.24	0.40	0.25
Integrated Gradient	0.22	0.33	0.20
Integrated Gradient (x Input)	0.64	0.00	0.00

Try ferret!

from transformers import AutoModelForSequenceClassification, AutoTokenizer from ferret import Benchmark

name = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
model = AutoModelForSequenceClassification.from_pretrained(name)
tokenizer = AutoTokenizer.from_pretrained(name)

```
bench = Benchmark(model, tokenizer)
explanations = bench.explain("You look stunning!", target=1)
evaluations = bench.evaluate_explanations(explanations, target=1)
```

bench.show_evaluation_table(evaluations)

Local perspective

- Explaining prediction of speech models
- Assessing explainability methods for transformers models

Joint works with

Alkis Koudounas

Elena Baralis

Luca de Alfaro

and all the other collegues & collaborators!

Flavio Giobergia

elianap.github.io/

Thanks!

eliana.pastor@polito.it

eliana__pastor

@elianapastor.bsky.social

eliana-pastor