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Abstract

To achieve better performance and greater fairness in Feder-
ated Learning (FL), much of the existing research has cen-
tered on individual clients, using domain adaptation tech-
niques and redesigned aggregation schemes to counteract
client data heterogeneity. However, an overlooked scenario
exists where clients belong to distinctive groups, or, client
types, in which groups of clients share similar character-
istics such as device specifications or data patterns. De-
spite being common in group collaborations, this scenario
has been overlooked in previous research, potentially lead-
ing to performance degradation and systemic biases against
certain client types. To bridge this gap, we introduce Fed-
erated learning with Group Customization and Reweight-
ing (FedGCR). FedGCR enhances both performance and
fairness for FL with Distinct Client Types, consisting of
a Federated Group Customization (FedGC) model to pro-
vide customization via a novel prompt tuning technique
to mitigate the data disparity across different client-types,
and a Federated Group Reweighting (FedGR) aggregation
scheme to ensure uniform and unbiased performances be-
tween clients and between client types by a novel reweight-
ing approach. Extensive experiment comparisons with prior
FL methods in domain adaptation and fairness demonstrate
the superiority of FedGCR in all metrics, including the
overall accuracy and performance uniformity in both the
group and the individual level. FedGCR achieves 82.74%
accuracy and 12.26(↓) in performance uniformity on the
Digit-Five dataset and 81.88% and 14.88%(↓) on Domain-
Net with a domain imbalance factor of 10, which signifi-
cantly outperforms the state-of-the-art. Code is available at
https://github.com/celinezheng/fedgcr.

Introduction
Federated Learning (FL) enables multiple clients to collab-
orate in training deep learning models while maintaining
the privacy of their data by only sharing the model updates
after each round of local training (McMahan et al. 2017).
While individual clients gain a more sophisticated model ef-
fectively trained on the collective data by aggregating each
client’s model update in a central server, the heterogeneity
of the data between each client may induce biased results as
well as performance degradation. Efforts have been made to

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of the Federated Learning with Dis-
tinct Client Types scenario. Clients from a platform host-
ing paintings (in green) collaborate with another platform,
where individual clients possess personal hand-drawn im-
ages (in blue), to jointly train an image classifier. The sce-
nario reveals a unique setting where collective differences
may pose challenges to traditional FL approaches.

address these issues, such as integrating domain adaptation
techniques into the model for enhanced performance (Jiang,
Wang, and Dou 2022; Qu et al. 2022; Yoon et al. 2021) and
redesigning the aggregation scheme for performance unifor-
mity to promote individual fairness (Li et al. 2020; Xu et al.
2023; Li et al. 2021a).

However, existing research has mostly focused on the in-
dividual client level, neglecting the potential existence of
diverse types of clients in FL. As depicted in Fig. 1, the
scenario of Federated Learning with Distinct Client Types
(FL-DCT) naturally appears in collaborations between large
online platforms, each hosting multiple clients with their re-
spective private data. To illustrate the scenario, consider the
setting presented in Figure 1. Clients from a platform host-
ing data with a certain characteristics (e.g., paintings, illus-
trated in green in the figure) collaborate with another plat-
form, where individual clients possess images of another
domain (e.g., personal hand-drawn images, in blue) to train
an image classifier jointly. The collective differences under
this setting pose challenges to traditional FL approaches. Re-
cent developments of decentralized social networking pro-
tocols such as ActivityPub (Kominers and Wu 2023; Pierce
2023),1 a decentralized social networking protocol, suggests

1cf. https://www.w3.org/TR/activitypub/.



that future FL projects could involve users between large
social media platforms. Influenced by factors such as de-
vice standards, image processing norms, or platform cul-
ture, user data from different platforms may present distinct
domain differences, corresponding to disparate and distinct
client-types, i.e., categories or groupings of clients based on
similarities in term of their respective data. Overlooking the
client-type differences risks forfeiting opportunities for bet-
ter performance through type-specific model customization
and poses challenges to achieving greater fairness at a col-
lective level, potentially leading to systemic biases against
whole groups of clients due to their unique characteris-
tics, which may not be adequately captured or addressed by
generic models.

Remarkably, existing research centered on individual
clients fails to adequately address the performance and fair-
ness challenges specific to FL with Distinct Client Types.
Techniques for individual-based domain adaptation in FL
often result in considerable space complexity by pursuing
complete personalization for each client (Kulkarni, Kulka-
rni, and Pant 2020). Such approaches not only fall short of
guaranteeing uniform FL performance across all clients (Li
et al. 2021b) but also overlook the collective needs of clients
belonging to the same type. On the other hand, methods pro-
moting individual fairness in FL (Li et al. 2020) are ill-suited
for ensuring fairness at the collective level, especially when
distinct client types are present. Diverse data distributions
and unique characteristics among groups of clients belong-
ing to different types can pose difficulties in achieving uni-
form performance when addressing them individually. Cate-
gorizing clients enables us to handle data heterogeneity and
ensure uniform performance across client types.

In this work, we aim to achieve both good performance
and better fairness in Federated Learning with Distinct
Client Types. Our goal is to enhance performance via type-
based customization, while promoting fairness at the collec-
tive level between types of clients by encouraging a con-
sistent distribution of performance across different client
types. To this end, we introduce Federated learning with
Group Customization and Reweighting (FedGCR), consist-
ing of the Federated Group Customization (FedGC) model
and the Federated Group Reweighting (FedGR) aggrega-
tion scheme. FedGC is designed to tackle data disparity
across client types, elevating FL performance at the client-
type level. Building on the state-of-the-art visual prompt
tuning technique (Jia et al. 2022), FedGC leverages pre-
trained Vision Transformers (ViT) to offer customization for
each client according to its specific type using carefully de-
signed prompts. In particular, FedGC leverages two types
of prompts: global and type-specific prompts. Conceptu-
ally, the global prompts facilitate general adjustments to the
pretrained ViT, whereas the type-specific prompts provide
customization that boosts performances for each client-type
without requiring distinct models.

On the other hand, FedGR addresses collective fairness
considerations, ensuring performance uniformity across
client types. Specifically, to protect client data privacy and
confidentiality, FedGR first leverages the type-specific fea-
ture vector—averaged over the client’s dataset—to clus-

ter the clients into a predetermined number of groups,
circumventing the need for a priori client-type informa-
tion. Then, based on the clustering result, FedGR intro-
duces a group-wise reweighting mechanism that expands
prior FL individual-level fairness algorithms to also account
for collective-level fairness. In particular, following the ap-
proach of Li et al. (2020), FedGR recalibrates the aggrega-
tion weight of each client’s model updates based on the aver-
age performances of the cluster they belong to, in addition to
their own performances. To account for potential clustering
inaccuracies, we include a scheduling hyperparameter that
gradually enhances the influence of group reweighting rel-
ative to individual reweighting. While an overly restricted
cluster count will cause some cluster to contain multiple
client-types, we find that setting the cluster number equal to
or greater than the client-type count results in near-perfect
alignment, due to the efficacy of FedGC.

We investigate the task of image classification where each
client type corresponds to a distinct data domain, further
subjecting them to additional imbalance settings. Extensive
experiments over three multi-domain datasets reveal that
FedGCR surpasses all baselines in every assessed metric, in-
cluding overall accuracy as well as performance uniformity
between client-types and between individual clients.

Our contributions are summarized as follows:

• We investigate the scenario of Federated Learning with
Distinct Client Types (FL-DCT), considering both per-
formance and fairness at the collective client-type level.

• We present Federated learning with Group Cus-
tomization and Reweighting (FedGCR), a novel FL al-
gorithm consisting of the FedGC model which provides
customization for distinct client-types via a novel visual
prompt tuning design, and the FedGR scheme which
enables performance uniformity at the collective level
through group reweighting approaches, while also main-
taining individual performance uniformity.

• Extensive experiments on three real-world datasets es-
tablish the superiority of FedGCR over baseline methods
on both performance and fairness, especially under im-
balanced settings.

Related Work
Federated Learning
Federated Learning (FL) facilitates collaborative train-
ing across multiple clients without revealing private
data (McMahan et al. 2017). In FL, clients send model up-
dates to a central server, where they are aggregated using
factors like data size proportion for weighting each client’s
input. The server then redistributes the consolidated model
for further training. This standard approach assumes that
client data are independent and identically distributed (IID),
leading to potential degradation in performance when clients
have distinct datasets (Li et al. 2022) and naturally feature
biased results (Collins et al. 2021).

Domain Adaptation in FL To handle client data hetero-
geneity, prior works adopt methods ranging from align-
ing client data through techniques such as appending a



small subset of shared data (Zhao et al. 2018), preprocess-
ing (Sheller et al. 2019), feature alignment (Liu et al. 2021;
Jiang, Wang, and Dou 2022), style transfer (Chen et al.
2023), and data augmentation (Yoon et al. 2021; Zhou and
Konukoglu 2023), to providing personalized FL (Kulkarni,
Kulkarni, and Pant 2020), i.e., customizing the model pa-
rameters for each individual client (Li et al. 2021b,c; Tan
et al. 2022; Marfoq et al. 2022; Zhong et al. 2023; Sat-
tler, Müller, and Samek 2020; Ghosh et al. 2020). However,
these methods come with substantial computational over-
head and entail significant memory storage requirements. In
particular, clustered FL (Sattler, Müller, and Samek 2020;
Ghosh et al. 2020) features completely parallel and duplica-
tive FL training for each cluster of clients. An alternative
approach aims to reduce the shared model’s sensitivity to
distinct inputs (Foret et al. 2020; Jiang, Wang, and Dou
2022), but the trade-off between robustness and sensitiv-
ity may compromise performance (Zhang et al. 2019). In
contrast, FedGCR adopts novel prompt tuning techniques,
enabling a single model to perform type-customized opera-
tions, thereby avoiding the aforementioned trade-offs.

Fairness in FL To mitigate biased results, (Mohri, Sivek,
and Suresh 2019; Hu et al. 2020; Li et al. 2020, 2021b) aim
to encourage a more uniform distribution of the model’s
performance across clients by adjusting the aggregation
scheme. For example, AFL utilizes a min-max optimiza-
tion to boost the worst-performing clients (Mohri, Sivek, and
Suresh 2019), while q-FFL reweights the aggregation to fa-
vor clients with higher loss (Li et al. 2020). However, the
above works focus on individual clients, whereas this work
also considers the systemic bias between distinct groups of
clients belonging to different client types. It is worth clar-
ifying that prior works exploring group fairness generally
aim to mitigates bias between data sample groups within
each client’s private dataset (Zhang, Kou, and Wang 2020;
Ezzeldin et al. 2023; Du et al. 2021; Papadaki et al. 2022).
In contrast, our work focuses on fairness among groups of
clients corresponding to different client-types, and aim for
uniform performance between the different types. A recent
work (Yue, Nouiehed, and Al Kontar 2023) similarly ad-
dresses fair performance across both groups of clients and
individual clients. However, it relies on a priori knowledge
of the client groups, while our approach automatically in-
fers the client type based on anonymized information. Fi-
nally, these works do not address scenario where client’s pri-
vate data exhibits distinct domains differences. In contrast,
FedGCR utilizes prompt tuning to overcome the domain dis-
parity through customization for different client-types.

Prompt Tuning for Visual Tasks
Inspired by prompt tuning techniques in NLP (Liu et al.
2023), Visual Prompt Tuning (VPT) (Jia et al. 2022) aims
to leverage large vision models, i.e., Vision Transformers
(ViT) (Dosovitskiy et al. 2021) for downstream tasks. Con-
cretely, while ViT processes a sequential array of image
patches, VPT inserts learnable prompt tokens into the ar-
ray to be processed by a frozen pretrained ViT alongside
the image patches. In essence, the lightweight prompt to-

kens guides the ViT to achieve customization for the down-
stream task. Concurrent work (Zhou et al. 2022b,a) develops
prompt tuning for vision-language models (e.g., CLIP (Rad-
ford et al. 2021)) for improved results on zero-shot image
classification tasks. In particular, the work of Zhou et al.
(2022a) features a second order customization, where an
image encoder processes an input image into secondary
prompts that further finetunes the model behaviour. In this
work, we improve upon VPT based on such concept and de-
sign FedGCR to tackle the novel scenario of FL-DCT.

Methodology
To address the challenges of Federated Learning with Dis-
tinct Client Types (FL-DCT), we introduce Federated learn-
ing with Group Customization and Reweighting (FedGCR),
consisting of a novel Federated Group Customization
(FedGC) model, which provides customization over the dis-
tinct domain differences at the local level, and a Federated
Group Reweighting (FedGR) aggregation scheme, which
provides an improved aggregation process that allows for
uniform performances at both the collective client type level
and the individual client level at the server level. Fig. 2 pro-
vides a high-level illustration of the entire framework.

The FedGC Model
Model Design FedGC provides type-based customization
by leveraging prompt tokens. In particular, a set of learn-
able embeddings are utilized as global prompts, while a
fully connected neural network named GC-Net is utilized
to project image representations into type-specific prompts.
As shown in Fig. 2, FedGC consists of a frozen pretrained
ViT, another MLP classification head, GC-Net, and a set of
learnable global prompts denoted as p = {p1, p2, . . . , pn}.
By devising a two-stage process, FedGC efficiently lever-
ages ViT to serve as both the image encoder and the image
classifier.2 In the first stage, FedGC crafts a type-specific
prompt h for the input image. Specifically, image patches
are passed through ViT and then projected via GC-Net to
derive the type-specific prompt h. In the second stage, the
type-specific prompt h is added onto the global prompts
p̄ = {p1 + h, p2 + h, . . .}. The combined prompts are con-
catenated to the image patches and passed through the ViT
to derive the image representation z, which is then processed
by the MLP head to produce the final classification result ŷ.
Intuitively, the global prompts p, shared by all clients, repre-
sent a global adjustment to align the ViT for the image clas-
sification task, while the type-specific prompts h, crafted by
GC-Net for each input image, offer customization based on
the data domain of the corresponding client type.

It is worth noting that FedGC features a novel design that
sets it apart from existing methods. Compared to VPT (Jia
et al. 2022), we cleverly leverage ViT not only as the classi-
fier but also as an image encoder, and offer additional cus-
tomization by using the ViT embeddings to craft the type-
specific prompts. This unique approach enables us to take
advantage of the powerful Vision Transformers for FL-DCT,

2The ViT depiction in Fig. 2 mirrors Dosovitskiy et al. (2021).



Figure 2: Illustration of FedGCR. The figure presents an example of 5 client types (indicated by color) with distinct domains
collaborating in FL. FedGC enables customization at the client level through a two-stage process: 1) crafting the type-specific
prompt h by processing the input image with ViT and GC-Net (black arrows), then combining h with the global prompts (p1
and p2, red arrow), and 2) process the combined prompts with the image by ViT (blue arrows) into the image representation z,
then by MLP for the final classification prediction ŷ. FedGR performs group reweighting based on cluster results of the client
representations h̃ (Equation (4)) at the server level, ensuring uniform performance between the client-types.

while maintaining a lightweight design by keeping the num-
ber of trainable parameters low.

The FedGR Scheme
The conventional FL setting (McMahan et al. 2017) with K
clients operates under the following objective

min
θ
f(θ) =

K∑
k=1

ωkLk(θ), (1)

where
Lk(θ) =

∑
(x,y)∈Dk

ℓCE(θ,x, y) (2)

denotes the local objective of client k, i.e., the empirical risk
over the client’s local dataset Dk of image x, label y pairs,
with ℓCE being the cross entropy loss, whereas the propor-
tion of data hold by each client ωk = |Dk|∑

ξ |Dξ| is used as the
the aggregation weight. While such design aligns with the
empirical risk of centralized machine learning when client
data are independent and identically distributed (IID), it be-
comes less effective when client data are heterogeneous.
With FedGR, we aim to tackle the challenges presented by
this heterogeneity, thereby enhancing performance unifor-
mity for Federated Learning with Distinct Client Types (FL-
DCT). Following (Li et al. 2020), we modify Equation (1)
for an FL-DCT objective fDCT that considers both individ-
ual and type-based performance uniformity. With T types
each consisting of Ni clients, FedGR utilize a global aggre-
gation objective of

min
θ
fDCT (θ) =

T∑
i=1

Ni∑
j=1

ωij(Lij(θ)
1−βL̃i(θ)

β)q+1, (3)

where the ij subscript denotes the jth the client under the
ith type, while q > 0 and β ∈ [0, 1] are hyperparameters.

Similar to Equation (1), ωij and Lij denotes the data size
portion and local objective of a client, respectively, while
L̃i = 1

Ni

∑Ni

j Lij is the average loss over all clients be-
longing to type i. By including both Lij and L̃i, along with
the exponent q > 0, Equation (3) promotes performance
uniformity in both the individual and type-based collective
level by assigning larger aggregation weights to the lower
performing clients and client-types. Furthermore, β controls
the balance between individual and collective fairness.

Anonymized Clustering While directly leveraging ex-
plicit client-type information in Equation (3) seem straight-
forward, requiring clients to supply explicit type information
may jeopardize privacy or cause mislabeling. To circumvent
these issues, we aim to utilize anonymized clustering to au-
tomatically identify the type of each client. Thus, in each
communication round, in addition to sending the model up-
date, each client also sends a client representation h̃, created
through averaging the type-specific prompt h over their pri-
vate dataset. Specifically, to avoid class imbalance revealing
client data information, h̃ is calculated as

h̃ =
1

C

C∑
c

1

|Dc|
∑
x∈Dc

hx, (4)

where Dc indicates the subset of a client data that belongs to
class c while hx indicates the type-specific prompt h crafted
from image x via the ViT encoder and the GC-Net.

Leveraging the h̃ of each client, we utilize Gaussian
Mixture Model (GMM) (Xu and Jordan 1996) to clus-
ter clients into a predetermined number of clusters (T ′).3

3FedGCR performs well even with T ′ ̸= T (See Section. Ab-
lation).



FedGR thereby operates Equation (3) by the cluster results.
Since the clustering algorithm relies on GC-Net to generate
prompts that are correctly aligned to the client type, it may
be less accurate in the beginning. Therefore, we devise

β = δ(1− γr−1), (5)

where r is the round number starting from 1 to R. In the first
round, i.e., r = 1, β equals to 0. Then, γr−1 exponentially
approaches 0 such that β approaches to δ.

Note that FedGR also calculates the cluster centers H, the
mean of h̃ over each cluster, and returns them to all clients
to facilitate the group customization loss detailed below.

The Local Learning Objective
Finally, we detail the local learning objective utilized in
FedGCR. In particular, we modify Equation (2) and replace
ℓCE with a more sophisticated

ℓ = ℓCE + λ1ℓGC + λ2ℓRA, (6)

where the group customization loss ℓGC is added to better
guide the prompt customization processes in FedGC and
the representation alignment loss ℓRA to prevent the lo-
cal training process results in image representations that
deviates from the shared model. In particular, while the
cross-entropy loss ℓCE provides provides supervision learn-
ing over the classification predicted ŷ, both ℓGC and ℓinv
leverages a contrastive learning approach to guide the type-
specific prompt h and the image representation z with server
aggregated results, respectively.

The Group Customization Loss FedGCR employs the
group customization loss ℓGC to guide the creation of type-
specific prompts h using GC-Net. Our aim is twofold. On
the one hand, we aim to foster a self-supervised mecha-
nism enabling GC-Net to generate h that can be aptly and
accurately clustered according to the client’s data domain.
Thus, leveraging the cluster center prompts H , we incorpo-
rate a contrastive learning loss design (Oord, Li, and Vinyals
2018) in ℓGC to guide each client’s type-specific prompts
h to become more aligned with its current clusters. On the
other hand, we wish spur the continual improvement of cus-
tomization by GC-Net. Thus, we device another term using
each client’s averaged prompt from the previous round h̃prev
as a negative sample within the contrastive loss design. In-
tuitively, the design presents a balance between exploitation
of the current clustering result and exploration of a better
clustering, leading to enhanced customization. Formally, the
group customization loss is written as

ℓGC = − log
exp(h ·Hi/τ)

exp(h · h̃prev/τ) +
∑

exp(h ·Ht/τ)
, (7)

where i denotes the cluster which the client belongs to,Hi is
the ith cluster center,

∑
indicates summation over all clus-

ters (t = 1 to T ′), and τ denotes the temperature parameter.

The Representation Alignment Loss Lastly, to prevent
client representation drifting hampering the convergence of
FL training (Jiang, Wang, and Dou 2022; Li, He, and Song
2021), we use the representation alignment loss ℓRA, a con-
trastive loss on the image representation z. In particular, for

Algorithm 1: FedGCR for FL with Distinct Client Types.
Input: ViT, initial parameter θ0 ≡ {ψ0, ϕ0,p0} (GC-Net, MLP,
global prompts). Hyperparameters η, T ′,K,M, λ1, λ2, γ, τ, q.
Client data and corresponding proportion denoted by D and ω.
ServerExecutes:
1: Initialize cluster center H0 as NULL.
2: for each round r in 1, . . . , R do
3: for each client k in 1, . . . ,K in parallel do
4: Lr

k, h̃
r
k, θ

r
k ← LocalUpdate(θr−1,Hr−1, T [k])

5: Hr, T ← Cluster({h̃r
k}Kk=1, T

′)
6: Prepare {Ni} and (·)k ↔ (·)ij by T for θk, ωk, L

r
k.

7: β ← 0.5− 0.5γr−1

8: L′
ij = (Lr

ij)
1−β( 1

Ni

∑Ni
k=1 L

r
ik)

β

9: θr ←
∑T ′

i=1

∑Ni
j=1 ωij

(
L′

ij

)q+1
θij

LocalUpdate(θ0,H, i):
1: Initialize ℓ← 0; Obtain z0 by θ0
2: for each epoch m in 1, . . . ,M do
3: L← 0; {ψ, ϕ,p} ← θm−1,
4: for each (x, y) in D do
5: h← GC-Net(ψ,ViT(x))
6: z ← ViT(x | p+ h)
7: ℓCE ← ℓCE + CrossEntropy(MLP(ϕ, z), y)
8: if H is NULL then
9: L← L+ ℓCE

10: else
11: ℓGC ← Equation (7) with (h, h̃,H, i, τ)
12: ℓRA ← Equation (8) with (z, z0, zprev, τ)
13: L← L+ (ℓCE + λ1ℓGC + λ2ℓRA)
14: θm ← θm−1 − η∇L
15: zprev ← z; h̃← Equation (4)
16: return L, h̃, θM

each communication round, we denote the local FedGC pa-
rameters in the prior round as θprev , the received parameters
as θ0, and the image representations derived by the corre-
sponding parameters as zprev and z0, respectively.

ℓRA = − log
exp(z · z0/τ)

exp(z · z0/τ) + exp(z · zprev/τ)
, (8)

where the current parameters (producing z) align with the
global model (z0) and improve over the previous result
(zprev).

The Full FedGCR Algorithm
Algorithm 1 outlines the FedGCR procedure for FL with
Distinct Client Types. It consists of two main components:
ServerExecute and LocalUpdate. In the server side, after
the initialization of the cluster center (Line 1), the server
first enforces the update of the local clients (Line 4). This
update leverages the parameter θ, the cluster centers H =
H1, . . . ,HT ′ where T ′ is the number of client types, and
the client cluster id T [k] for client k computed in the pre-
vious step. Afterward, the algorithm updates the T ′ clus-
ters given the updated aggregated representation h̃rk for each
client k (Line 6). As a result, we obtain the updated cluster
centers Hr at step r and the cluster indexes T that encode
the anonymized clustering results. The final step (Line 9)
is the group reweighting aggregation described in Equation
(3). These steps repeat for the R server aggregation rounds.



The LocalUpdate component performs the local up-
date of the client model. The process first operates the
GC-Net(ψ, ·) module (Line 5) to derive the type-specific
prompt h. It then retrieves the image representation z, with
x|p+h denoting the concatenation of the image patches (x)
and the combined prompts (p+h) in Line 6. Then, the algo-
rithm updates the three components of the loss: ℓCE (Line
7), ℓGC (Line 11), and ℓRA (Line 12). Lastly, it updates the
parameter θ. The process proceeds iteratively through the
client training epochs and returns the loss, the average (and
anonymized) client representation h̃, and the parameter θ.

Experiments
Experiment Settings
Datasets We evaluate the proposed FedGCR for FL-DCT
on the three multi-domain image classification datasets.
Digit-Five (Zhou et al. 2020) combines MNIST, SVHN,
USPS, SynthDigits, and MNIST-M to exhibit 5 numeric
digit image domains. DomainNet (Peng et al. 2019) in-
cludes 6 real-world image types including Clipart, Info-
graph, Painting, Quickdraw, Real (i.e., photographs), and
Sketch. PACS (Li et al. 2017) consists of 4 different types of
pictures including Photo, Art Painting, Cartoon, and Sketch.

Domain Imbalance Factor (DIF) In this study, we inves-
tigate FL-DCT by using each domain as a distinct client-
type. In particular, each client holds private data from a sin-
gular domain within the multi-domain datasets. We further
scrutinize the imbalanced setting through the application of
the domain imbalance factor (DIF) (Cui et al. 2019), where
the client count of each client-type Ni is organized in a geo-
metric series, with the DIF being the quotient of the highest
and lowest number. We analyze scenarios with DIF values
of 1, 5, 10 (DIF= 1 is a balanced setting).

Baseline Methods We compare the proposed FedGCR
with the following baselines. (i) The original FL algorithm,
FedAvg (McMahan et al. 2017); (ii) fairness-FL methods,
proposed to improve the fairness/uniformity of individual
client performances: q-FFL (Li et al. 2020), AFL (Mohri,
Sivek, and Suresh 2019), and TERM (Li et al. 2021a); (iii)
domain-FL methods, proposed to enhance domain adapta-
tion: Harmo-FL (Jiang, Wang, and Dou 2022), FedSAM (Qu
et al. 2022), and FedMix (Yoon et al. 2021).

Evaluation Metrics We conduct evaluations on both per-
formance and fairness. In particular, we measure the perfor-
mance by the average classification accuracy over all clients
(Avg). For fairness, we follow (Li et al. 2020) to measure
the standard deviations between individual and type per-
formances. Namely, we measure the standard deviation be-
tween the averaged accuracy of each client-types (σtype) and
that between individual clients (σclient). The objective is to
achieve higher values in Avg and lower values in σtype and
σclient.

Implementation Details We employ ViT-B/16 (Dosovit-
skiy et al. 2021) pretrained on ImageNet (Deng et al. 2009).
Other configurations include: server rounds R = 50, client
training epochs M = 1, hyperparameters λ1 = 0.5, λ2 =

0.1, τ = 0.5, γ = 0.5, q = 1, and learning rate η = 1×10−3

using the AdamW optimizer (Loshchilov and Hutter 2017).
The cluster number T ′ is, by default, set to the domain count
for each dataset. The entire experiment is conducted in Py-
Torch and executed on a single NVIDIA Tesla V100 GPU.

Main Results
Table 1 and Table 2 present the experiment results of Digit-
Five and DomainNet, respectively. The results reveal that
FedGCR achieves both the best performance and the greatest
fairness in terms of performance uniformity among all com-
pared methods. It is worth noting that past FL methods for
(individual) fairness shows slightly better uniformity than
those devoted to domain adaptation in both domain-wise and
client-wise metrics. However, both groups are significantly
outperformed by FedGCR, demonstrating the superiority of
FedGCR in achieving fairness. Similarly, domain adaptation
methods find better average accuracy than the methods for
fairness, yet are still outperformed by FedGCR due to the
customization power of FedGC. Finally, we observe that for
each method, results on all three metrics degrades as the DIF
increases, revealing the impact of imbalanced setting. Nev-
ertheless, FedGCR degrades the least compares to all base-
lines, such that the gap between the baselines and FedGCR
are the widest in the most imbalanced case of DIF = 10.

Qualitative Studies
Sensitivity Tests on Cluster Count We assess the ac-
curacy of the anonymized clustering and FedGCR perfor-
mances under different cluster counts in Digit-Five (with
T = 5 client-types). Table 3 shows the clustering accuracy,
the percentage of clients correctly grouped with the majority
client-type in their cluster. We observe that 100% accuracy
is attained whenever cluster count is larger than the number
of types T ′ ≥ T = 5. This suggests that FedGCR can func-
tion accurately by setting an adequately large T ′, even when
the exact number of client-types is unspecified.

Table 4, present FedGCR performances with varying clus-
ter count T ′ for DIF= 1 and DIF= 10. Comparing the re-
sults of different T ′ ̸= 5 in Table 4 to T ′ = T = 5 in
Table 1, we find that 1) FedGCR outperforms all baselines
even under T ′ < T , where incorrect clustering is guaran-
teed. This may be explained by FedGCR providing cluster-
ing based on contrastive loss of data representations h̃, such
that the most disparate types are clustered for FedGC to pro-
vide customization for the most required differences, and
FedGR reweights between client-types that has the most dis-
parate performance differences. In addition, we observe that
providing slightly more cluster can result in the best perfor-
mance, where T ′ = 6 consistently finds the best results. As
the clustering accuracy is 100% under these conditions, we
find that the clusters subdivide the client-type groups with
larger inter-type differences, thereby providing even better
customization and reweighting.

Ablation Study Table 5 presents the ablation results of
FedGCR in Digit-Five (under DIF= 10). In particular, the
first row of Table 5 presents plain FL (i.e., FedAvg), whereas



Method DIF=1 DIF=5 DIF=10

Avg(↑) σtype(↓) σclient(↓) Avg(↑) σtype(↓) σclient(↓) Avg(↑) σtype(↓) σclient(↓)

FedAvg 68.19 (0.26) 19.76 (0.06) 19.56 (0.48) 63.39 (0.25) 24.77 (0.16) 22.23 (0.33) 60.62 (1.13) 26.76 (1.09) 21.84 (0.95)

AFL 69.15 (0.73) 17.03 (0.79) 16.41 (0.75) 65.57 (0.39) 21.34 (0.13) 18.89 (0.03) 61.81 (0.95) 23.58 (0.49) 18.70 (0.27)
q-FFL 66.78 (0.95) 17.03 (0.79) 19.38 (1.09) 64.16 (0.83) 24.60 (0.85) 21.80 (0.91) 60.69 (0.92) 25.52 (0.77) 20.56 (0.72)
TERM 51.48 (28.11) 19.14 (1.12) 19.0 (0.86) 62.58 (0.61) 25.18 (0.54) 23.05 (0.49) 59.52 (0.46) 27.02 (0.38) 22.22 (0.33)

Harmo-FL 74.06 (1.01) 18.52 (0.31) 18.72 (1.01) 69.17 (0.86) 24.15 (0.81) 21.22 (0.84) 64.33 (1.88) 26.95 (1.1) 21.28 (1.21)
FedSAM 74.76 (1.01) 18.52 (0.31) 18.64 (0.48) 69.75 (0.13) 23.81 (0.25) 20.87 (0.11) 64.06 (1.47) 27.82 (0.81) 21.75 (0.98)
FedMix 51.44 (28.30) 19.01 (0.35) 19.0 (0.35) 62.64 (0.08) 25.23 (0.42) 22.92 (0.03) 59.46 (0.09) 27.37 (0.11) 22.47 (0.18)

FedGCR 85.82 (0.07) 8.55 (0.37) 8.55 (0.37) 85.11 (0.09) 9.86 (0.22) 8.40 (0.05) 82.74 (0.47) 12.26 (0.36) 8.52 (0.19)

Table 1: Digit-Five results. Best results in bold, standard deviation over 3 repeated runs are shown in the parentheses.

Method DIF=1 DIF=5 DIF=10

Avg(↑) σtype(↓) σclient(↓) Avg(↑) σtype(↓) σclient(↓) Avg(↑) σtype(↓) σclient(↓)

FedAvg 82.03 (0.07) 14.84 (0.14) 15.17 (0.21) 80.69 (0.44) 16.52 (0.59) 11.81 (0.31) 77.67 (0.54) 19.80 (0.59) 13.76 (0.31)

AFL 81.70 (0.24) 14.25 (0.10) 14.43 (0.49) 80.99 (0.27) 15.46 (0.08) 11.18 (0.09) 79.61 (0.06) 16.83 (0.19) 11.09 (0.04)
q-FFL 81.86 (0.32) 15.04 (0.17) 15.34 (0.15) 81.17 (0.60) 16.43 (0.68) 11.76 (0.38) 78.07 (0.52) 18.74 (0.47) 12.59 (0.35)
TERM 81.93 (0.35) 14.85 (0.19) 15.13 (0.3) 80.56 (0.05) 16.47 (0.06) 11.87 (0.03) 77.67 (0.47) 19.53 (0.78) 13.63 (0.43)

Harmo-FL 83.16 (0.10) 14.52 (0.23) 14.89 (0.5) 82.79 (0.47) 16.47 (0.05) 11.50 (0.23) 79.56 (0.22) 18.64 (0.21) 12.53 (0.35)
FedSAM 83.67 (0.12) 13.77 (0.10) 13.77 (0.21) 82.96 (0.35) 15.95 (0.57) 11.37 (0.32) 81.04 (0.28) 17.44 (0.46) 11.74 (0.39)
FedMix 81.78 (0.47) 15.12 (0.18) 15.35 (0.05) 80.57 (0.05) 16.35 (0.04) 11.86 (0.06) 77.55 (0.30) 19.46 (0.67) 13.63 (0.43)

FedGCR 84.08 (0.29) 10.89 (0.53) 11.18 (0.65) 83.67 (0.19) 13.18 (0.07) 9.04 (0.35) 81.88 (0.52) 14.88 (0.08) 9.07 (0.17)

Table 2: DomainNet results. Best results in bold, standard deviation over 3 repeated runs are shown in the parentheses.

T ′ 3 4 5 6 7

DIF= 1 60.00% 80.00% 100.00% 100.00% 100.00%
DIF= 5 69.23% 92.31% 100.00% 100.00% 100.00%

DIF= 10 81.82% 95.45% 100.00% 100.00% 100.00%

Table 3: Clustering accuracy with Digit-Five.

DIF=1 DIF=10

Avg σtype σclient Avg σtype σclient

T ′ = 3 85.65 8.67 8.60 82.62 8.88 8.81
T ′ = 4 85.44 8.62 8.60 82.49 12.63 8.77
T ′ = 6 85.86 8.45 8.16 82.99 11.92 8.36
T ′ = 7 85.84 8.39 8.14 82.52 12.51 8.62

Table 4: Results with different cluster count T ′ in Digit-Five

FedGC and FedGR are both provided with anonymized clus-
tering to operate correctly. We observe that FedGC provides
a more substantial improvement in both performance and
uniformity than FedGR since the former directly interacts
with the distinct type condition, while the latter indirectly
provides reweighting as a remedy. However, FedGR still
provides a substantial improvement, allowing FedGCR to
surpass baseline methods by a more notable margin.

Conclusion
This paper introduces Federated learning with Group Cus-
tomization and Reweighting (FedGCR), a novel Federated
Learning approach that addresses the challenges posed

FedGR FedGC Avg(↑) σdomain(↓) σclient(↓)
– – 60.62 26.76 21.84
✓ – 63.01 23.03 17.75
– ✓ 79.49 16.57 11.61
✓ ✓ 82.74 12.26 8.52

Table 5: Ablation results comparing FedGR and FedGC per-
formances in Digit-Five under DIF= 10.

by client-type diversity, encouraging more uniform perfor-
mance among groups of clients. FedGCR consists of two
core components: FedGC for customized client-type adapta-
tion and FedGR for ensuring fairness across different client
types. Leveraging Vision Transformers, FedGC employs
global and type-specific prompts to enable tailored model
adjustments for each client type. Meanwhile, FedGR adopts
a group-wise reweighting mechanism to ensure uniform per-
formance across client types, promoting collective fairness
without needing a priori knowledge of client types, thus en-
suring client data privacy. Extensive experiments on real-
world datasets confirm its superiority for both performance
and fairness metrics, demonstrating its effectiveness in ac-
counting for client diversity and promoting fairness across
groups of clients. While we have explored a static setting of
client types, our work leads to future explorations on scenar-
ios where client types are dynamic or even hybrid, present-
ing fascinating opportunities for future works.
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