
AINUR: HARMONIZING SPEED AND QUALITY IN DEEP MUSIC GENERATION
THROUGH LYRICS-AUDIO EMBEDDINGS

Giuseppe Concialdi†‡∗, Alkis Koudounas‡∗, Eliana Pastor‡, Barbara Di Eugenio†, Elena Baralis‡

†University of Illinois at Chicago, Chicago, Illinois, US
‡Politecnico di Torino, Turin, Italy

ABSTRACT

In the domain of music generation, prevailing methods
focus on text-to-music tasks, predominantly relying on diffu-
sion models. However, they fail to achieve good vocal quality
in synthetic music compositions.

To tackle this critical challenge, we present Ainur, a
hierarchical diffusion model that concentrates on the lyrics-
to-music generation task. Through its use of multimodal
Lyrics-Audio Spectrogram Pre-training (CLASP) embed-
dings, Ainur distinguishes itself from past approaches by
specifically enhancing the vocal quality of synthetically pro-
duced music. Notably, Ainur’s training and testing processes
are highly efficient, requiring only a single GPU. According
to experimental results, Ainur meets or exceeds the quality of
other state-of-the-art models like MusicGen, MusicLM, and
AudioLDM2 in both objective and subjective evaluations.
Additionally, Ainur offers near real-time inference speed,
which facilitate its use in practical, real-world applications.

Index Terms— deep music generation, multimodal rep-
resentation, generative modeling, lyrics-to-music

1. INTRODUCTION

In recent years, deep music generation has witnessed re-
markable advancements driven by the integration of cutting-
edge machine learning techniques. Generating music poses
substantial challenges, as it requires proficient modeling of
long-range sequences, generating high-fidelity, coherent au-
dio with the limited availability of paired audio-text data,
and dealing with substantial computational resource require-
ments. Several models have demonstrated impressive skills
in music generation from text while differing in their condi-
tioning. Jukebox [1] specifically focused on lyrics-to-music
generation. Other models, such as MusicGen [2] and Musi-
cLM [3], aimed for a more general text-to-music generation,
conditioning musical composition on arbitrary textual de-
scriptions rather than lyrics. Nevertheless, they still struggle
with producing vocals of satisfactory quality, often yielding
unclear and unintelligible outputs. Furthermore, the potential

∗
These authors contributed equally to this work.

of leveraging lyric content to enhance vocal coherence and
overall musical output remains underexplored.
To tackle these challenges, we propose Ainur1, a novel three-
stage hierarchical diffusion model specifically tailored for the
task of lyrics-to-music generation. In the first stage, we cap-
ture global musical structure and context, which are then used
to create intermediate representations with greater dimension-
ality in the second stage. In the third stage, Ainur leverages
these representations to produce high-quality audio outputs.
Through this workflow, Ainur can generate 48 kHz stereo
audio samples 22 seconds long in near real-time, achieving
an excellent balance between producing high-quality musical
content and minimizing creation time requirements.
Inspired by CLAP [4], we propose Contrastive Lyrics-Audio
Spectrogram Pre-training (CLASP) embeddings to guide the
generation process and enhance vocal quality. CLASP, which
finetunes CLIP [5] with synced lyrics and audio spectrogram
data, improves the structural consistency of the vocals. We
argue that integrating lyrics to guide the generation process
further enhances the quality and expressiveness of the syn-
thesized music compositions. Our model excels in lyrics-to-
music and text-to-music generation tasks by accommodating
both textual descriptions and lyrics as conditioning inputs.
We train the model on a curated 2k-hour dataset and con-
duct objective and subjective evaluations, revealing Ainur’s
competitive performance over state-of-the-art approaches in
the field. Ainur is designed to run on single, consumer-grade
GPUs, bringing state-of-the-art music generation to a wider
audience and mitigating the need for massive computational
resources. We release the model2 for practitioners to use.

Our contributions. We introduce Ainur, an efficient model
capable of producing high-quality 22-second stereo music
samples at 48 kHz in near real-time. Our model serves a dual
purpose by enabling both lyrics- and text-conditioned music
generation. We demonstrate the quality and adherence of the
generated audio with the provided lyrical and textual prompts
through objective and human evaluations.

1The name “Ainur” is inspired by Tolkien’s The Silmarillion, where the
Ainur are divine spirits who create the world through their music. This story
is known as the Ainulindalë or “The Music of the Ainur” in Elvish language.

2Repository: https://github.com/Ainur-Music/Ainur

https://github.com/Ainur-Music/Ainur

x

ES

ET EL EA

z

wT wL wA

x0

z0

x1 xT

z1 zT z̃

x̃

CLASP

(a) Ainur training

"x

ET EL EA

"z z̃

wT wAwL

x̃

(b) Ainur inference

Fig. 1. The architecture of the proposed approach, Ainur, with (a) training and (b) inference workflows. represents the cross-
attention operation; denotes the conditioning of the diffusion process via latent injection.

U-Net encoder further compresses the spectrogram. Learning
to generate this low-dimensional prior is crucial for real-time,
high-quality audio generation.
Diffusion Autoencoder (DAE). In the final stage (Fig. 1(a),
bottom), Ainur employs intermediate representations to guide
the generation of the high-dimensional audio signal x̃, captur-
ing fine-grained details. The diffusion autoencoder generates
high-quality 48 kHz stereo audio. Two key aspects enable
this: a U-Net architecture and the injection of the prior gen-
erated in the second stage z̃ into the U-Net layers. The U-Net
models the reverse diffusion process, enabling the network
to significantly speed up the downsampling and upsampling
operations. The injection of the prior and its concatenation
with the noise of the reverse denoising process enables the
network to act as both a decoder and a vocoder, thus en-
hancing the generation process to handle high-dimensional
data while maintaining close-to-real-time performance. Ainur
uses a pre-trained DAE from the ArchiSound [18] library,
capable of compressing input signals into a 32x compres-
sion rate latent representation. This compression balance be-
tween dimensionality reduction and data representation qual-
ity aligns well with the needs of the diffusion process.
Loss Functions. Ainur employs three different loss func-
tions tailored to its training architecture. During contrastive
pre-training, we optimize the cosine similarity between au-
dio and lyric embeddings to align their representations. In
both the prior and autoencoding diffusion stages, we use the
v-objective loss function, defined as:

L = Et⇠[0,1],�t

h
||bv�t

� v�t
||22

i
(1)

Here the traditional diffusion equation is modified to involve
bv�t and v�t, representing generated and original velocities,
respectively, computed as the derivative of data points (x�t)

concerning noise level changes (�t). This measures how data
points change with slight adjustments in noise level [19].

Inference. We outline the inference process in Fig.1(b). As
previously discussed, in Ainur, the default task is to generate
music from lyrics. It uses encoded information from CLASP
encoders and text descriptors to create a compact representa-
tion of the input. Unlike the training phase, no other inputs are
used. This compact representation guides the generation of a
latent representation z̃ from Gaussian noise "z . This latent
representation, along with high-dimensional Gaussian noise
"x, is used in the decoding U-Net to produce original music
samples that reflect the style learned during model training.
Two crucial factors influence the speed of inference, namely
the number of diffusion steps to transition from noise to mu-
sic and the embedding scale and conditioning inputs used for
guiding the generation.

4. EXPERIMENTAL SETUP

Dataset. To train and evaluate Ainur, we use an internal
dataset comprising over 31,000 not-licensed music tracks,
amounting to approximately 2k hours of high-quality 48 kHz
stereo music. This dataset includes metadata about authors,
genres, and time-synced lyrics embedded within the songs.
The training samples are segmented into 22-second-long
pieces, increasing the exposure to various training samples
during each epoch. For evaluation, we set aside approxi-

⇤
While Jukebox can generate samples up to 22 seconds, it requires signif-

icant computational resources and time. When tested on a typical consumer-
grade GPU, we were only able to generate one second. Hence, the results we
present may not fully encapsulate the full capabilities of Jukebox.

⇤
MusicLM is capable of producing 22-second music samples, but it re-

quires approximately 5 minutes, making our extensive objective evaluation
impractical. Still, we evaluated 22-second audios for the subjective one.

(a) Ainur training.

x

ES

ET EL EA

z

wT wL wA

x0

z0

x1 xT

z1 zT z̃

x̃

CLASP

(a) Ainur training

"x

ET EL EA

"z z̃

wT wAwL

x̃

(b) Ainur inference

Fig. 1. The architecture of the proposed approach, Ainur, with (a) training and (b) inference workflows. represents the cross-
attention operation; denotes the conditioning of the diffusion process via latent injection.

U-Net encoder further compresses the spectrogram. Learning
to generate this low-dimensional prior is crucial for real-time,
high-quality audio generation.
Diffusion Autoencoder (DAE). In the final stage (Fig. 1(a),
bottom), Ainur employs intermediate representations to guide
the generation of the high-dimensional audio signal x̃, captur-
ing fine-grained details. The diffusion autoencoder generates
high-quality 48 kHz stereo audio. Two key aspects enable
this: a U-Net architecture and the injection of the prior gen-
erated in the second stage z̃ into the U-Net layers. The U-Net
models the reverse diffusion process, enabling the network
to significantly speed up the downsampling and upsampling
operations. The injection of the prior and its concatenation
with the noise of the reverse denoising process enables the
network to act as both a decoder and a vocoder, thus en-
hancing the generation process to handle high-dimensional
data while maintaining close-to-real-time performance. Ainur
uses a pre-trained DAE from the ArchiSound [18] library,
capable of compressing input signals into a 32x compres-
sion rate latent representation. This compression balance be-
tween dimensionality reduction and data representation qual-
ity aligns well with the needs of the diffusion process.
Loss Functions. Ainur employs three different loss func-
tions tailored to its training architecture. During contrastive
pre-training, we optimize the cosine similarity between au-
dio and lyric embeddings to align their representations. In
both the prior and autoencoding diffusion stages, we use the
v-objective loss function, defined as:

L = Et⇠[0,1],�t

h
||bv�t

� v�t
||22

i
(1)

Here the traditional diffusion equation is modified to involve
bv�t and v�t, representing generated and original velocities,
respectively, computed as the derivative of data points (x�t)

concerning noise level changes (�t). This measures how data
points change with slight adjustments in noise level [19].

Inference. We outline the inference process in Fig.1(b). As
previously discussed, in Ainur, the default task is to generate
music from lyrics. It uses encoded information from CLASP
encoders and text descriptors to create a compact representa-
tion of the input. Unlike the training phase, no other inputs are
used. This compact representation guides the generation of a
latent representation z̃ from Gaussian noise "z . This latent
representation, along with high-dimensional Gaussian noise
"x, is used in the decoding U-Net to produce original music
samples that reflect the style learned during model training.
Two crucial factors influence the speed of inference, namely
the number of diffusion steps to transition from noise to mu-
sic and the embedding scale and conditioning inputs used for
guiding the generation.

4. EXPERIMENTAL SETUP

Dataset. To train and evaluate Ainur, we use an internal
dataset comprising over 31,000 not-licensed music tracks,
amounting to approximately 2k hours of high-quality 48 kHz
stereo music. This dataset includes metadata about authors,
genres, and time-synced lyrics embedded within the songs.
The training samples are segmented into 22-second-long
pieces, increasing the exposure to various training samples
during each epoch. For evaluation, we set aside approxi-

⇤
While Jukebox can generate samples up to 22 seconds, it requires signif-

icant computational resources and time. When tested on a typical consumer-
grade GPU, we were only able to generate one second. Hence, the results we
present may not fully encapsulate the full capabilities of Jukebox.

⇤
MusicLM is capable of producing 22-second music samples, but it re-

quires approximately 5 minutes, making our extensive objective evaluation
impractical. Still, we evaluated 22-second audios for the subjective one.

(b) Ainur inference.

Fig. 1. The architecture of the proposed approach, Ainur, with (a) training and (b) inference workflows. represents the
cross-attention operation; denotes the conditioning of the diffusion process via latent injection.

2. RELATED WORK

Text-to-audio generation has recently gathered significant
attention, with several approaches tackling this task’s chal-
lenges. DiffSound [6] uses CLIP [5] embeddings as input
to a diffusion model that predicts mel spectrogram features.
AudioGen [7] applies an encoder-decoder structure with T5
encoding text and an autoregressive transformer decoding
latent audio codes. AudioLDM [8] learns a VAE latent space
from spectrograms and reconstructs audio from latent codes
while AudioLDM2 [9] bridges GPT-2 text encoding and la-
tent diffusion reconstruction via AudioMAE [10] features.
More closely related to music generation, some works focus
on synthesizing music conditioned from the text. Riffu-
sion [11] fine-tunes Stable Diffusion on mel spectrograms
with a paired music-text dataset. MusicLM [3] extends
AudioLM’s [12] autoregressive modeling to incorporate
text inputs. MusicGen [2] similarly uses an autoregressive
transformer conditioned on text or melody representations.
Moûsai [13] uses a two-stage cascading diffusion process
with a 1D U-Net architecture. Ainur enhances audio co-
herence using combined text-audio embeddings and mel-
spectrogram techniques, distinguishing itself from Moûsai,
which concentrates solely on amplitude spectrograms and
text. Unlike Moûsai, Ainur (i) incorporates multimodal
audio-text conditioning, (ii) features lyrics-driven vocal
generation for linguistic alignment, and (iii) employs mel-
spectrograms rather than amplitude spectrograms.
The only prior work explicitly targeting the lyrics-to-music
task is Jukebox [1], which employs a maximum likelihood
autoregressive sparse transformer trained on a discrete audio-
encoded space. In contrast, Ainur focuses on generating
music directly from lyrics using a hierarchy-of-experts dif-
fusion conditioned on lyrics-audio embeddings. Inspired
by Contrastive Language-Audio Pre-training (CLAP) [4],
which fine-tunes CLIP [5] with language-audio data, we
align synced lyrics and audio spectrograms for enhanced vo-

cal consistency. This multi-modal approach enables Ainur
to adapt to both lyrics-to-music and text-to-music generation
tasks, utilizing textual and lyrical inputs for conditioning.

3. METHOD

In this section, after overviewing CLASP embeddings, we de-
scribe the architecture, the training, and inference procedures.
We illustrate Ainur’s hierarchical architecture in Fig. 1(a).

3.1. CLASP Embeddings

Taking inspiration from CLIP [5] and CLAP [8], we introduce
the CLASP embeddings to guide the coherent lyrics gener-
ation process. Like CLIP strengthens the link between im-
ages and text, CLAP aligns natural language and audio by
transforming the audio into a 2D representation using STFT
and applying contrastive learning. The CLASP model learns
embeddings to represent lyrics (EL) and audio spectrograms
(EA) such that lyric-audio pairs from the same song are close
in the shared embedding space while unrelated pairs are dis-
tant. This ensures coherence between textual lyrics and cor-
responding audio fragments. The embeddings also capture
temporal and sequential relationships to align lyrics with au-
dio over time. CLASP pre-training thus aims to fuse linguis-
tic and acoustic domains analogously to how CLIP and CLAP
integrate images/text and audio/text modalities, respectively.

The Mel Spectrograms are generated using FFTs, with
80 frequency channels, 1024 window length, and 256 hop
size. The spectrogram encoder (EA) is based on a simple
Vision Transformer (ViT) architecture [14]. It operates on
Mel-spectrograms extracted from the audio, using patches of
size 32×32 pixels, and generates embeddings of 512 features.
The lyrics encoder is a transformer model, specifically adopt-
ing the same architecture as the text encoder in CLIP. We
fine-tune a publicly-available CLIP checkpoint [15] to adapt
it specifically to our domain.

3.2. Ainur Architecture

Ainur integrates three modalities: text descriptions, lyrics,
and audio through spectrograms. The multi-stage structure
focuses on different levels of abstraction, from global patterns
to local details. This allows the model to learn representations
capturing overall and granular musical structures within the
audio data. By hierarchically incorporating multimodal data,
Ainur is able to steer music creation based on language and
audio inputs at multiple levels of representation.
CLASP and Text Embeddings. In the first stage (Fig. 1(a),
top), we generate a low-dimensional representation of in-
put data (i.e., lyrics and audio) using pre-trained encoders,
emphasizing global structure and contextual information.
Alongside CLASP embeddings (wL and wA), we use natural
language descriptions (e.g., genre, style, artists, and song
progression) to influence music synthesis. A frozen T5 [16]
encoder (ET) processes the text description (wT). We em-
ploy cross-attention with the resulting embeddings to guide
the generation toward a specific style and part of the track.
Diffusion Prior. In the second stage (Fig. 1(a), middle),
a 1D encoder compresses the spectrogram, creating a low-
dimensional prior essential for real-time, high-quality audio
generation. This prior, denoted as z, is a condensed represen-
tation of the original audio signal x, formed through STFT
and Mel scale mapping transformations. Rather than us-
ing conventional high-dimensional audio cross-attention, this
operation occurs within the latent space of an autoencoder.
Consequently, the model can assimilate more specific details
about the content and structure of the generated music.
Diffusion Autoencoder (DAE). In the final stage (Fig.1(a),
bottom), Ainur employs the second stage’s representations
to craft the high-quality 48 kHz stereo audio signal, x̃. This
precision stems from the diffusion autoencoder[17], combin-
ing the U-Net architecture’s 1D design and the integration
of the prior, z̃, from the previous stage. The U-Net’s de-
sign facilitates efficient downsampling and upsampling. By
merging the prior with noise during the reverse denoising
process, Ainur functions both as a decoder and a vocoder,
enhancing its generation capabilities while maintaining near
real-time efficiency. We employ a pre-trained DAE from the
ArchiSound [17] library, compressing input signals to a 32x
latent representation. This compression effectively balances
dimensionality reduction with data representation quality.
Loss Functions. We optimize the cosine similarity between
audio and lyric embeddings during contrastive pre-training to
align their representations. In the prior and autoencoding dif-
fusion stages, we use the v-objective loss function:

L = Et∼[0,1],σt

[
||v̂σt − vσt ||22

]
(1)

Here the traditional diffusion equation is modified to involve
v̂σt and vσt, representing generated and original velocities,
respectively, computed as the derivative of data points (xσt

)

concerning noise level changes (σt). This measures how data
points change with slight adjustments in noise level [18].

Inference. We outline the inference process in Fig.1(b).
Ainur’s main task is to generate music from lyrics. Unlike its
training phase, Ainur operates without any extra input, lever-
aging only lyrics and, optionally, text descriptors and audio.
These inputs create a latent representation z̃ from Gaussian
noise εz , which is then processed by the decoding U-Net,
along with high-dimensional noise εx, to produce music sam-
ples that reflect the learned style. The effectiveness of this
process depends on the number of steps to convert noise to
music and the specific embedding and inputs used.

4. EXPERIMENTAL SETUP

Dataset. To train and evaluate Ainur, we use an internal
dataset comprising over 31,000 not-licensed music tracks,
amounting to approximately 2k hours of high-quality 48 kHz
stereo music. This dataset includes metadata about authors,
genres, and time-synced lyrics embedded within the songs.
The training samples are segmented into 22-second-long
pieces, increasing the exposure to various training samples
during each epoch. For evaluation, we set aside approxi-
mately 1,000 samples, which include validation and test sets
encompassing 10 and 50 hours of music data, respectively.

Training. We extract lyrics and textual descriptions from
metadata and normalize them. Synchronized audio and lyrics
segments are subject to random cropping, resulting in a win-
dow of approximately 22 seconds. We combine information
related to the artist, genre, style, and sequence to construct the
text descriptors. Audio data remains unaltered and unscaled
to enable the model to capture and learn variations in loudness
levels and pitch, characteristic of specific music genres.

We train Ainur on a single Nvidia V100 GPU. CLASP
training spans 120,000 iterations. The prior undergoes train-
ing for over 1 million iterations, while the Mel spectrogram-
based DAE is pre-trained. We provide detailed information
about the hyperparameter setup, the training procedure, and
the hardware used in the official project repository2.

Metrics. We assess Ainur’s performance on four aspects: the
inference time, the quality of the synthesized audio, how well
it aligns with the provided text description, and the overall
vocals quality.

Inference Time. This metric evaluates the time required to
synthesize a single music sample and reflects the model’s ap-
plicability in real-world scenarios.

3While Jukebox can generate samples up to 22 seconds, it requires signif-
icant computational resources and time. We could only generate one second
when tested on a typical consumer-grade GPU. Hence, the results we present
may not fully encapsulate Jukebox capabilities.

4MusicLM is capable of producing 22-second music samples, but it re-
quires approximately 5 minutes, making our extensive objective evaluation
impractical. Still, we evaluated 22-second audios for the subjective one.

Table 1. Objective evaluation. The best results for 22-second samples are in bold, best overall are underlined. The rate column
indicates the sampling rate in KHz and the channels, 1 for mono and 2 for stereo.
MODEL RATE [kHz] LENGTH [s] #PARAMETERS [M] INFERENCE [s] ↓ FADVGGISH ↓ FADYAMNET ↓ FADTRILL ↓
AINUR 48@2 22 910 14.5 8.38 20.70 0.66
AINUR W/OUT CLASP 48@2 22 910 14.7 8.40 20.86 0.64
AUDIOLDM 16@1 22 181 2.20 15.5 784.2 0.52
AUDIOLDM 2 16@1 22 1100 20.8 8.67 23.92 0.52
MUSICGEN 16@1 22 300 81.3 14.4 53.04 0.66
JUKEBOX3 16@1 1 1000 538 20.4 178.1 1.59
MUSICLM4 16@1 5 1890 153 15.0 61.58 0.47
RIFFUSION 44.1@1 5 890 6.90 5.24 15.96 0.67

Table 2. Subjective evaluation. Best results in bold.

MODEL INFERENCE [s] ↓ WINS ↑ REL↑ VCL↑
AINUR 14.50 24 3.12 1.94
AUDIOLDM 2 20.80 13 3.04 1.60
MUSICGEN 81.30 12 3.04 1.36
MUSICLM 290.2 1 2.86 1.16

Fréchet Audio Distance (FAD). The FAD [19] metric deter-
mines the dissimilarity between two probability distributions,
one derived from generated audio while the other from refer-
ence audio samples. FAD provides an objective measure of
audio quality, demonstrating a strong correlation with human
perception. Models that yield low FAD scores are generally
expected to produce realistic and plausible audio. We report
the FAD based on three audio embedding models: (1) VG-
Gish [20], (2) Trill [21], and (3) YAMNet [22].

Subjective Evaluation. We conducted a user study to evaluate
the audio samples using three criteria: Relevance to Text In-
put (REL), Vocal Quality (VCL), and number of wins (Wins).
In assessing REL, participants were asked to rate the align-
ment between audio and provided text input on a scale from
1 (low) to 5 (high). For VCL, they were asked to judge the
vocal quality on a 1 to 5 scale (best). We then asked partici-
pants to select the best sample from four options for the same
prompt. We report the number of wins for each approach.

5. RESULTS AND DISCUSSION

We compare Ainur’s performance against several state-of-the-
art approaches, including AudioLDM [8], AudioLDM2 [9],
MusicGen [2], MusicLM [3], Jukebox [1] and Riffusion [11].
Table 1 shows the results of the objective evaluation. We
treated all generated samples as mono 16kHz audios to ensure
a fair comparison. Ainur stands out as the sole model able to
generate stereo high-quality music samples. Within the mod-
els capable of producing 22-second-long samples, Ainur out-
performs all other approaches on FADVGGish and FADYAMNET
metrics while remaining competitive on FADTrill. Ainur also
exhibits competitive inference times versus all models, slower

only than AudioLDM. Jukebox, while assessed on only one
second of audio due to computational constraints, underper-
forms. On the other hand, Riffusion achieves the best overall
scores but generates only 5-second clips. We also examine the
performance of our approach if conditioned only with text,
without lyrics (second row in Table 1). The results show that
text-only guidance achieves lower performance on FADVGGish
and FADYAMNET, and comparable outcomes for FADTrill.
We also conduct a subjective evaluation of the approaches ca-
pable of producing 22 seconds of audio to assess the quality
of the vocals and the coherence of the generated music to the
textual conditioning prompts. A total of 200 generated sam-
ples were evaluated by 10 human subjects, with preferences
reported as the number of wins, relevance, and vocal qual-
ity in terms of MOS. Table 2 highlights the results, showing
that our approach outperforms all other methods. Its domi-
nance in the vocal quality MOS rating highlights the bene-
fits of training specifically for the lyrics-to-music generation.
This confirms Ainur leads in human perceptions for applica-
tions requiring long, high-quality audio.

6. CONCLUSION

We propose Ainur, a novel music generation model that tack-
les the challenges of lyrics-to-music generation. Our results
demonstrate the high vocal quality and best adherence to the
text input of our generated music samples and their highest
user preference among state-of-the-art techniques.

7. ACKNOWLEDGMENTS

This work is partially supported by FAIR - Future Artificial
Intelligence Research (PIANO NAZIONALE DI RIPRESA
E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2,
INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013)
and the spoke “FutureHPC & BigData” of the ICSC - Cen-
tro Nazionale di Ricerca in High-Performance Computing,
Big Data and Quantum Computing, funded by the European
Union - NextGenerationEU. This manuscript reflects only the
authors’ views and opinions, neither the European Union nor
the European Commission can be considered responsible.

8. REFERENCES

[1] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook
Kim, Alec Radford, and Ilya Sutskever, “Jukebox: A genera-
tive model for music,” arXiv preprint arXiv:2005.00341, 2020.

[2] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant,
Gabriel Synnaeve, Yossi Adi, and Alexandre Défossez, “Sim-
ple and controllable music generation,” arXiv preprint
arXiv:2306.05284, 2023.

[3] Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse En-
gel, Mauro Verzetti, Antoine Caillon, Qingqing Huang,
Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al.,
“Musiclm: Generating music from text,” arXiv preprint
arXiv:2301.11325, 2023.

[4] Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail,
and Huaming Wang, “Clap learning audio concepts from nat-
ural language supervision,” in ICASSP 2023-2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2023, pp. 1–5.

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, et al., “Learning trans-
ferable visual models from natural language supervision,” in
International conference on machine learning. PMLR, 2021,
pp. 8748–8763.

[6] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao
Weng, Yuexian Zou, and Dong Yu, “Diffsound: Discrete dif-
fusion model for text-to-sound generation,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 31,
pp. 1720–1733, 2023.

[7] Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer,
Alexandre Défossez, Jade Copet, Devi Parikh, Yaniv Taigman,
and Yossi Adi, “Audiogen: Textually guided audio genera-
tion,” in The Eleventh International Conference on Learning
Representations, 2022.

[8] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu,
Danilo Mandic, Wenwu Wang, and Mark D Plumbley, “Audi-
oLDM: Text-to-audio generation with latent diffusion models,”
in Proceedings of the 40th International Conference on Ma-
chine Learning, Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett, Eds. 23–29 Jul 2023, vol. 202 of Proceedings of Machine
Learning Research, pp. 21450–21474, PMLR.

[9] Haohe Liu, Qiao Tian, Yi Yuan, Xubo Liu, Xinhao Mei, Qi-
uqiang Kong, Yuping Wang, Wenwu Wang, Yuxuan Wang, and
Mark D Plumbley, “Audioldm 2: Learning holistic audio gen-
eration with self-supervised pretraining,” arXiv e-prints, pp.
arXiv–2308, 2023.

[10] Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael
Auli, Wojciech Galuba, Florian Metze, and Christoph Feicht-
enhofer, “Masked autoencoders that listen,” Advances in Neu-
ral Information Processing Systems, vol. 35, pp. 28708–28720,
2022.

[11] Seth Forsgren and Hayk Martiros, “Riffusion,” [On-
line] Available: https://github.com/riffusion/
riffusion, Dec. 2022.

[12] Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene
Kharitonov, Olivier Pietquin, Matt Sharifi, Dominik Roblek,
Olivier Teboul, David Grangier, Marco Tagliasacchi, et al.,
“Audiolm: a language modeling approach to audio genera-
tion,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 2023.

[13] Flavio Schneider, Zhijing Jin, and Bernhard Schölkopf,
“Moûsai: Text-to-Music Generation with Long-Context Latent
Diffusion,” arXiv e-prints, p. arXiv:2301.11757, Jan. 2023.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in International Conference on
Learning Representations, 2020.

[15] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,
Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush, “Transformers:
State-of-the-art natural language processing,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, Online, Oct. 2020,
pp. 38–45, Association for Computational Linguistics.

[16] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Pe-
ter J Liu, “Exploring the limits of transfer learning with a uni-
fied text-to-text transformer,” The Journal of Machine Learn-
ing Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[17] Flavio Schneider, “ArchiSound: Audio Generation with Dif-
fusion,” arXiv e-prints, p. arXiv:2301.13267, Jan. 2023.

[18] Tim Salimans and Jonathan Ho, “Progressive distillation for
fast sampling of diffusion models,” in The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. 2022, OpenReview.net.

[19] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and
Matthew Sharifi, “Fréchet audio distance: A reference-free
metric for evaluating music enhancement algorithms.,” 2019.

[20] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F
Gemmeke, Aren Jansen, R Channing Moore, Manoj Plakal,
Devin Platt, Rif A Saurous, Bryan Seybold, et al., “Cnn ar-
chitectures for large-scale audio classification,” in 2017 ieee
international conference on acoustics, speech and signal pro-
cessing (icassp). IEEE, 2017, pp. 131–135.

[21] J. Shor, A. Jansen, R. Maor, O. Lang, O. Tuval, F. de Chau-
mont Quitry, M. Tagliasacchi, I. Shavitt, D. Emanuel, and
Y. Haviv, “Towards learning a universal nonsemantic repre-
sentation of speech,” in INTERSPEECH, 2020.

[22] M. Plakal and D. Ellis, “Yamnet,” [Online] Available:
https://github.com/tensorflow/models/
tree/master/research/audioset/yamnet, Jan
2020.

https://github.com/riffusion/riffusion
https://github.com/riffusion/riffusion
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

	 Introduction
	 Related Work
	 Method
	 CLASP Embeddings
	 Ainur Architecture

	 Experimental Setup
	 Results and Discussion
	 Conclusion
	 Acknowledgments
	 References

